

Poster Session

TP Poster Session

Session Date	May 20 (Tue.), 2025
Session Time	14:30-16:00
Session Room	Room C (103+104)
Session Chair(s)	Prof. Ki-Chan Kim (Hanbat National University, Korea) Prof. Sun-Ki Hong (Hoseo University, Korea) Prof. Han-wook Cho (Chungnam National University, Korea) Prof. Minro Park (Soonchunhyang University, Korea) Prof. Jin-hwan Lee (Chonnam National University, Korea)

TP_01

Optimal Design and Analysis of Permanent Magnet Linear Synchronous Motor Considering Cogging Force

Ha-Jin Kim, Gang-Hoon Kim, and Dong-Kuk Lim University of Ulsan, Korea

TP_02

Impact Analysis of the Optimization Strategies of the Permanent Magnet Linear Synchronous Motor with Auxiliary Teeth and Compensation Coils

Ye Zhao, He Zhang, Junren Mu, and Yuhang Liu Harbin Institute of Technology, China

TP_03

Analysis of Improved Core Loss and Three-Dimensional Analysis for PMLSG Stator Considering Magnetic End Effects

Soo-Jin Lee¹, Seong-Won Kim¹, Chang-Woo Kim³, Hyun Sup Yang⁴, Kyung-Hun Shin², and Jang-Young Choi¹

¹Chungnam National University, Korea, ²Changwon National University, Korea, ³Chungnam State University, Korea, ⁴Hanon Systems, Korea

TP_04

Comparison and Experimental Validation of Magnetization Arrays in Double-Sided Permanent Magnet Linear Synchronous Machines

Hwi-Rang Ban¹, Min-Gyu Park³, Kyung-Hun Shin², and Jang-Young Choi¹

¹Chungnam National University, Korea, ²Changwon National University, Korea, ³Hanon Systems, Korea

The 15th International Symposium on Linear Drives for Industry Applications

TP_05

Design of Permanent Magnet Linear Motor Using Grain-Oriented Electrical Steel for Thrust Enhancement and Normal Force Ripple Reduction

Taek-Hyo Nam, Hye-Won Yang, Dong-Hyeon Park, In-Seok Song, Seah Park, and Sang-Yong Jung *Sungkyunkwan University, Korea*

TP_06

No-Load Magnetic Field and Cogging Force Calculation in Linear Permanent Magnet Vernier Motor Using Subdomain Model

Young-Ho Hwang¹, Nam-Ho Kim¹, Seok-Won Jung¹, Jin-hwan Lee², and Sang-Yong Jung¹ ¹Sungkyunkwan University, Korea, ²Chonnam National University, Korea

TP_07

Integration of Coil Winding Process into Linear Oscillating Actuators Design

Du-Ha Park¹, Seong-Hyeon Kim¹, Jin-Ho Choi¹, Ji-Hyeon Lee¹, Soo-Hwan Park², and Myung-Seop Lim¹ ¹Hanyang University, Korea, ²Dongguk University, Korea

TP_08

Effect of Manufacturing Tolerances on Thrust Ripple in Coreless Permanent Magnet Linear Synchronous Motor

Hye-Won Yang, In-Seok Song, Dong-Hyeon Park, Taek-Hyo Nam, and Sang-Yong Jung *Sungkyunkwan University, Korea*

TP_09


Performance Comparison and Study of a Nover Design of Dual Side-Permanent Magnet Linear Motor Using SMC Core

Chang-Hyeon Wang, Jae-Hoon Cho, Ho-Jin Oh, Daeseon Cheo, Seok-Won Jung, and Sang-Yong Jung *Sungkyunkwan University, Korea*

TP_10

Thrust Ripple Reduction in Linear Synchronous Motor through Notch Implementation

Yong-Jun Kwon, Nam-Ho Kim, Ho-Jin Oh, and Sang-Yong Jung *Sungkyunkwan University, Korea*

Novel Design Strategies of One Coil Type Permanent Magnet Actuator for Offshore Wind Power System

Jin-Seok Kim, Hyoung-Kyu Yang, and Jin-Hong Kim Korea Electronics Technology Institute, Korea

TP_12

Vibration Characteristics in Tubular Linear Induction Motor Based on Electromagnetic-Mechanical Coupled Analysis

Kyu-Seob Kim¹, Hye-Seong Kim², Yong-Min Lee², Dong-Hoon Ko², and Min-Ro Park² ¹Gyeongsang National University, Korea, ²Soonchunhyang University, Korea

TP_13

A Comparative Study of Dual Mover and Dual Stator Linear Oscillating Actuator Considering Mechanical Resonance in Linear Compressor

Soo-Hwan Park¹, Ji-Hyeon Lee², Du-Ha Park², Jaehoon Jeong³, and Myung-Seop Lim² ¹Dongguk University, Korea, ²Hanyang University, Korea, ³LG Electronics Co., Ltd., Korea

TP_14

Shaft Voltage Analysis Considering Force Ripple in SPMLSM Based on Stator Notch Design Han–Joon Yoon¹, Chang Hyeon Wang¹, Jin–hwan Lee², Seok–Won Jung¹, and Sang–Yong Jung¹ ¹Sungkyunkwan University, Korea, ²Chonnam National University, Korea

TP_15

Optimal Design of the Detent Force Reduction in a Permanent Magnet Linear Synchronous Machine

Jun-Beom Park¹, Jun-Ho Jang¹, Min-Mo Koo³, Hyun-Sup Yang⁴, Kyung-Hun Shin², and Jang-Young Choi¹

¹Chungnam National University, Korea, ²Changwon National University, Korea, ³Korea Institute of Industrial Technology, Korea, ⁴Hanon Systems, Korea

TP_16

Design and Analysis of Linear Induction Motors for Maglev Trains

Jun-Ho Jang¹, Jun-Won Yang¹, Hyeon-Jae Shin², Min-Gyu Park³, Kyung-Hun Shin⁴, and Jang-Young Choi¹

¹Chungnam National University, Korea, ²Korea Institute of Industrial Technology, Korea, ³Hanon Systems, Korea, ⁴Changwon National University, Korea

The 15th International Symposium on Linear Drives for Industry Applications

TP_17

Design and Experimental Evaluation of a 3kW Single-Phase Linear Permanent Magnet Generator for Stirling Engine Applications

Seong-Won Kim¹, Min-Gyu Park³, Kyung-Hun Shin², and Jang-Young Choi¹

¹Chungnam National University, Korea, ²Changwon National University, Korea, ³Hanon Systems, Korea

TP_18

Design of Linear Equivalent 2–D Finite Element Analysis Model for AFPMM Considering the End Effects in Radial Direction

Jae-Seung Lee, Mun-Seok Jang, Si-Uk Jung, and Jae-Woo Jung *Daegu University, Korea*

TP_19

Hybrid Method for Calculating AC Copper Losses in Permanent Magnet Linear Synchronous Motors

Nam-Ho Kim¹, Yong-Ho Hwang¹, Yong-Jun Kwon¹, Seok-Won Jung¹, Jin-hwan Lee², and Sang-Yong Jung¹ ¹Sungkyunkwan University, Korea, ²Chonnam National University, Korea

TP_20

One-Step Method for Reducing the Computational Time of PMLSM Analysis

Seung-Hwan Oh and Dong-Kuk Lim University of Ulsan, Korea

TP_21

Optimal Design of a Permanent Magnet Linear Synchronous Motor for Thrust Ripple Reduction Based on Machine Learning

Ji-Sung Lee, Seung-Hwan Oh, and Dong-Kuk Lim University of Ulsan, Korea

TP_22

Analysis and Consideration of Thrust Changes of Steel-Cored Permanent Magnet Linear Synchronous Motors with Different Pole Pitches

Na Mo Choi and Sung II Kim Hoseo University, Korea

A Comparative Study of Multi-Objective Optimization in Linear Oscillating Actuators

Du-Ha Park¹, Seong-Hyeon Kim¹, Jin-Ho Choi¹, Ji-Hyeon Lee¹, Soo-Hwan Park², and Myung-Seop Lim¹ ¹Hanyang University, Korea, ²Dongguk University, Korea

TP_24

Performances Analysis of Linear Oscillating Actuator with Dual Stator Topology

Jin-Ho Choi¹, Ji-Hyeon Lee¹, Du-Ha Park¹, Seong-Hyeon Kim¹, Soo-Hwan Park², and Myung-Seop Lim¹ ¹Hanyang University, Korea, ²Dongguk University, Korea

TP_25

Improved Loss Analysis Method Considering Core Anisotropy and AC Copper Loss in Linear Oscillating Actuator

Jin-Ho Choi¹, Ji-Hyeon Lee¹, Du-Ha Park¹, Seong-Hyeon Kim¹, Soo-Hwan Park², and Myung-Seop Lim¹ ¹Hanyang University, Korea, ²Dongguk University, Korea

TP_26

Comparison of Prediction Accuracy between Kriging and Deep Neural Network Surrogate Models for Design Optimization of Linear Oscillating Actuators

Seong-Hyeon Kim¹, Du-Ha Park¹, Jin-Ho Choi¹, Soo-Hwan Park², and Myung-Seop Lim¹ ¹Hanyang University, Korea, ²Dongguk University, Korea

TP_27

Novel Design Strategies of Two-Coil Type Permanent Magnet Actuator Considering Nonlinear Dynamics for Circuit Breaker in 66kV Offshore Wind Power System

Jin-Seok Kim, Hyoung-Kyu Yang, and Jin-Hong Kim Korea Electronics Technology Institute, Korea

TP_29

A Novel Superconducting Linear Motor Used on High Speed Maglev System Liao Zhiming and Zhao Huahua *Tongji University, China*

The 15th International Symposium on Linear Drives for Industry Applications

TP_30

A Multirate Model Predictive Current Control of GaN Power Amplifiers for Voice Coil Motors Yu-Xiang Xie¹, Guang-Zhong Cao¹, Hong-Jin Hu¹, Su-Dan Huang¹, and Deliang Liang² ¹Shenzhen University, China, ²Xi'an Jiaotong University, China

TP_32

Sensorless Control of PMLSM Based on a Novel Adaptive Super-Twisting Sliding Mode Observer

Yinze Hou, Yanxin Li, and Qinfen Lu *Zhejiang University, China*

TP_33

Three-Vector Model Predictive Thrust Control of Linear Flux Switching Permanent Magnet Motor with Load Force Observer

Xiang Wang, Long Fang, Mingyang Chen, and Ruiwu Cao Nanjing University of Aeronautics and Astronautics, China

TP_34

Research on Position Detection Method of Secondary Segmented-Linear Flux Switching Permanent Magnet Motor Based on Linear Hall

Long Fang, Mingyang Chen, Xiang Wang, and Ruiwu Cao Nanjing University of Aeronautics and Astronautics, China

TP_35

PI Gain Control Method Utilizing Inductive Characteristics of MR Dampers

Si-Uk Jung¹, Sung-Hyun Park², Byeong-Hwa Lee², and Jae-Woo Jung¹ ¹Daegu University, Korea, ²Korea Automotive Technology Institute, Korea

TP_36

Position Sensorless Control of PMLSM Based on Disturbance Observer

Geon-Hui Hyeong and Young-Wook Kim Chungbuk National University, Korea

Vibration Analysis of Electrodynamic Suspension Train Propulsion Systems: A Comparison Between Double-Layer and Single-Layer Coil Configurations

Huan Huang, Yougang Sun, Junqi Xu, and Guobin Lin *Tongji University, China*

TP_38

Analysis of Traction Force for High-Speed Maglev under Steady-State Levitation

Yu Jin, Zhiming Liao, Xiaohua Wang, and Hao Ding *Tongji University, China*

TP_39

Influence of the Rotational Stability by Adding Weight to the Rotor in the HTS Magnetic Bearing System

Togo Tagami, Keigo Yagi, Ken-ichi Kondo, and Shunsuke Ohashi Kansai University, Japan

TP_41

A Novel Algorithm of Force Distribution to Reduce Force Coupling for the Six-Degreeof-Freedom Maglev Planar Motors

Chao Wang and Guang-Zhong Cao Shenzhen University, China

TP_43

Thrust Ripple Reduction Technique Using Asymmetric Mover Structure in Double-Sided Spoke-Type Linear Synchronous Motor

Dong-Hyeon Park, Hye-Won Yang, Young-Ho Hwang, Taek-Hyo Nam, and Sang-Yong Jung *Sungkyunkwan University, Korea*

TP_44

Electromagnetic Characteristic Regression Model for PMLSM Based on Convolutional Neural Network with Attention Mechanism

In-Seok Song, Tae-Hyuk Ji, and Sang-Yong Jung *Sungkyunkwan University, Korea*

The 15th International Symposium on Linear Drives for Industry Applications

TP_45

Analysis of Electromagnetic Considering the End Effect of Linear Magnetic Gears Based on Subdomain Method

Seok-Hyeon Eom¹, Hwi-Rang Ban¹, Jeong-In Lee³, Hyun Sup Yang⁴, Kyung-Hun Shin², and Jang-Young Choi¹

¹Chungnam National University, Korea, ²Changwon National University, Korea, ³Hyundai Transys, Korea, ⁴Hanon Systems, Korea

TP_46

Analytical and Experimental Study of Tubular Linear Machine with Axially Magnetized Double-Sided Permanent Magnets and Slotless Armature Coil

Kyung-Hun Shin¹, Mingyu Park², Kyunghun Jung², and Jang-Young Choi³ ¹*Changwon National University, Korea,* ²*Hanon Systems, Korea,* ³*Chungnam National University, Korea*

TP_47

Performance Analysis of an Asymmetric Overhang Outer–Rotor Permanent Magnet Synchronous Motor under Z–Axis Linear Force

Jae-Gak Shin, Tae-Su Kim, Seong-Han Ryu, Jeong-Hun Park, and Ki Chan Kim Hanbat National University, Korea

TP_48


Electromagnetic Drag Force Analysis of Hyperloop Tube According to the B-H Curve Characteristics of Steel Tube

Seong-Hwi Kim¹, Ju Lee¹, Wooyeon Cho², and Hyung-Woo Lee³ ¹Hanyang University, Korea, ²POSCO Co., Ltd., Korea, ³Korea National University of Transportation, Korea

TP_49

A Linear Position Correction Method for Inductive Displacement Sensor in Inter-Segment Movement

Mingyang Chen, Long Fang, Xiang Wang, and Ruiwu Cao Nanjing University of Aeronautics and Astronautics, China

Optimal Design of Magnetic Module in Novel Trunk Locking System for Reducing Magnet Rotation Torque

Jae-Hoon Cho¹, Hyun-Woo Wui¹, Ho-Jin Oh¹, Kyoung Taek Kwak², Moo Seok Kwak², Kyeong Jun Lim², Jae Seung Lee², Jin Ho Hwang², Dong Hwan Lim², Seok-Won Jung¹, and Sang-Yong Jung¹ ¹Sungkyunkwan University, Korea, ²Hyundai Motor Company, Korea

TP_51

Analysis of Force and Losses Based on the Position and Length of the Ferromagnetic Pole Piece in a Linear MG

Taeyun Ha and EuiJong Park Chosun University, Korea

TP_52

Optimization of Motor to Reduce Axial and Radial Runout of the Direct Drive Motor

Rongping Fan, JuanJuan Cao, Shuhua Wang, Bian Zhang, and Yongjian Jin *Yokokawa Robotics (Shenzhen) Co., Ltd., China*

TP_53

End Teeth Topology Optimization of PMLSM Using Normalized Gaussian Network Jiaqi Hong, Lize Wu, Yanxin Li, and Qinfen Lu *Zhejiang University, China*

TP_54

Torque Ripple Optimization of Arc Linear Permanent Magnet Synchronous Motor with Subdomain Model

Kai Zhang^{1,2}, Yingquan Liu¹, and Junyong Lu¹ ¹Naval University of Engineering, China, ²Zhejiang University, China

TP_55

Analysis of Sensorless Control Applicable to Linear Motor: Methods and Applications AReum Kang and Jae Suk Lee Jeonbuk National University, Korea

The 15th International Symposium on Linear Drives for Industry Applications

TP_56

Semi-Active Control of Superconducting Electrodynamic Suspension Train Based on Magnetorheological Damper

Piji Feng, Guangtong Ma, Zhenhua Su, Libin Cui, Taoning Zhu, and Jun Luo *Southwest Jiaotong University, China*

TP_57

Feasible Design and Operating Investigations for Fast Wireless Power Charging Module Using Supercapacitor Unit in the High–Speed Superconducting Levitation Hyperloop Train Yoon Do Chung¹ and Chang Young Lee²

¹Suwon Science College, Korea, ²Korea Railroad Research Institute, Korea

TP_58

Modelling and Analysis of Double-Layer Harmonic Linear Generator for Superconducting Electrodynamic Suspension Integrated with Propulsion, Levitation and Guidance

Zhenhua Su, Guangtong Ma, Jun Luo, Piji Feng, and Libin Cui Southwest Jiaotong University, China

TP_59

Dynamic Characteristic Analysis of Linear Induction Motors Applying Various Skew Method Jin-hwan Lee¹, Ho-Chang Jung², Jung-Hyung Park³, Yong-Jae Kim⁴, and Sang-Yong Jung⁵ ¹Chonnam National University, Korea, ²Korea Automotive Technology Institute, Korea, ³Korea Research Institute of Ships & Ocean Engineering, Korea, ⁴Chosun University, Korea, ⁵Sungkyunkwan University, Korea

TP_60

Theoretical Modelling of Permanent Magnet Linear Eddy Current Brake Based on Equivalent Circuit

Libin Cui, Jun Luo, Zhenhua Su, Piji Feng, Guanglai Huang, and Guangtong Ma Southwest Jiaotong University, China

TP_61

Asymmetric Mover Design for Mitigating Detent Force and Thrust Ripple of Spoke-Type Permanent Magnet Linear Synchronous Machine

Hyeon-Taek Oh, Jong-Seok Seon, and Han-Kyeol Yeo Konkuk University, Korea

Coupling Magnetic Field Analysis of Teeth Slot and Longitudinal End Effects for Long Primary Double-Sided Linear Induction Motor

Tianping Li^{1,2}, Liming Shi^{1,2}, Yaohua Li^{1,2}, Zeyu Yang¹, Jinhai Liu^{1,2}, and Ganlin Kong^{1,2} ¹Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China

TP_63

Investigation of Braking Characteristics in Dual-Winding Rail Eddy Current Braking System with AC Excitation

Xu Niu, Baoquan Kou, and Junren Mu Harbin Institute of Technology, China

TP_64

Thrust Ripple Suppression in Spoke-Type Permanent-Magnet Linear Synchronous Machine with Arc-Shaped Mover Pole

Jong-Seok Seon, Hyeon-Taek Oh, and Han-Kyeol Yeo Konkuk University, Korea

TP_65

Influence of Novel Secondary Structure on the Performance of LP-DSLIM

Zhuo Zhang^{1,2}, Yumei Du^{1,2}, Liming Shi^{1,2}, and Ruihua Zhang^{1,2} ¹Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China